Ultrasound Guided Regional Anesthesia The Basics of Ultrasound Physics

Milica Markovic, MD

Assistant Professor of Anesthesiology
Weill Cornell Medical Center
New York Presbyterian Hospital

THE BASICS OF ULTRASOUND PHYSICS

Ultrasound Guidance for Regional Anesthesia

Allows the operator

- to see neural structures (as well as vascular, lung bowel)
- guide the needle under real-time visualization
- navigate away from sensitive anatomy
- monitor the spread of local anesthetic

Ultrasound waves

- Infrasound 0-20 Hz
- Audible sound 20 Hz to 20,000 Hz
- Ultrasound >20,000 Hz (or 20 KHz)
- Medical ultrasound 2.5 MHz to 15 MHz

Anatomy of a wave

Formation of ultrasound image

Formation of ultrasound image

Appearance of anatomic structures

Hyper-echoic:

- White structures/areas on the screen
- Ultrasound waves are reflected
- Tendons, fascia, bones...

Hypo-echoic:

- Dark structures/areas on the screen
- Ultrasound waves are not reflected
- Vessels, cysts...

Echogenicity: Fluid

Echogenicity: Fat and Muscle

Appearance of anatomic structures

(continued)

Nerves appear differently at different locations

Structures with similar appearance on ultrasound

- Nerves
- Tendons
- Ligaments

Sites B et.al. The Internet Journal of Anesthesiology. 2005(10) 1.

KEY CONCEPT: Penetration and Resolution

Transducers and Image Resolution

5-13 MHz Good spatial resolution; limited penetration depth

4-11 MHz
Greater penetration depth; decreased resolution

Infraclavicular PNB Appearance

Infraclavicular PNB Appearance

Gain

 Allows the operator to artificially change the intensity of the returning beam

Regional Anesthesia and Pain Medicine, Vol 32, No 5 (September-October), 2007: pp 419-433

NEEDLE APPROACH

Needle Visualization

Oblique Plane

WHERE'S THE TIP???

Needle Visualization

Needle Visualization

Transducer Movement

Sliding

Rotating

Tilting

Ultrasound Guided Regional Anesthesia Neuraxial Anesthesia

Milica Markovic, MD

Assistant Professor of Anesthesiology
Weill Cornell Medical Center
New York Presbyterian Hospital

Ultrasound Guided Neuraxial Anesthesia

Ultrasound for Neuraxial Anesthesia

- Permits passage of US waves through an interlaminar window providing imaging of the vertebral canal revealing a path into which a needle can be passed
- Also aids in identifying:
 - Intervertebral level
 - An estimation of the depth to epidural and to intrathecal spaces
 - The location of important landmarks (midline and interlaminar spaces)
- When should it be used?
 - Obesity/poor surface anatomy
 - S/p spinal surgery
 - Distorted spinal anatomy (elderly pts or scoliosis)
 - Pregnancy and preeclamptic patients with presacral edema

Anatomy

- The "interlaminar space" and "interspinous spaces" refer to the gaps between adjacent laminae and spinous processes
- Lumbar Spine: laminae do not overlap (as they do in Tspine) and there is a distinct interlaminar space between adjacent vertebrae
- The posterior epidural space has a triangular crosssection, typically 7 mm wide in the the midline in an anteroposterior dimension
- Conus medullaris is located a L1 vertebral body in most adults (varies from T12 – L3)*

Sonoanatomy of the Spine

- A curved-array, low frequency probe (2 5 MHz) allows for a wider field of view and deeper penetration
- Initial depth setting of 7 8 cm is appropriate for most patients; adjust depth, focus, and gain as needed
- 3 basic orientations of the the ultrasound probe and beam:
 - 1) Paramedian sagittal (sagittal plane lateral to midline)
 - 2) Paramedian sagittal oblique
 - 3) Transverse

Sonoanatomy of the Spine

- Bony structures appear as white, hyperechoic linear structures with a dense acoustic shadow (black)
- Connective tissue structures (ligaments &fascial membranes) are also hyperechoic, however have a lesser acoustic impedance thereby allowing limited visualization of deeper structures
- Fat and fluid have appear hypoechoic (dark) and have a very low acoustic impedance

Ultrasonographic Views of the Spine

Anatomic Planes and US Probe Orientations

5 Basic Views

- 1. PS Transverse Process View
- 2. PS Articular Process View
- 3. PS Oblique View
- Transverse Spinous Process View
- Transverse Interlaminar View

Longitudinal Views

#1 Parasagittal Transverse Process View

- Place probe in a PS orientation 3 – 4 cm from the midline just above the upper border of the sacrum
- TPs of successive lumbar vertebrae are visualized – "Trident Sign"
- Psoas major m. is visible btw acoustic shadows and deep to the TPs

#2 Parasagittal Articular Process View

- From TP view, slide the probe medially until a continuous hyperechoic line of "humps" is seen
- Each hump represents the facet joint between a superior and inferior articular process

#3 Parasagittal Oblique View

- From previous view, tilt the probe toward the midline
- Sloping hyperechoic laminae form a "sawtooth"-like pattern
- Intervening gaps represent the paramedian interlaminar spaces*

Interlaminar Spaces of the Parasagittal Oblique View

- From superficial to deep:
 - Posterior Complex
 - Ligamentum flavum
 - Epidural space
 - Posterior dura mater
 - Intrathecal space
 - Anterior Complex
 - Anterior dura
 - Post longitudinal ligament
 - Posterior vertebral body

Accurate identification of intervertebral

spaces

 Slide the probe caudad while maintaining a PS oblique orientation, until the horizontal hyperechoic line of the sacrum comes into view

- Center L5–S1 intervertebral space on the screen
- This location corresponds with the midpoint of the probe's long side
- Same approach to count up

Surface Marking for Needle Insertion

Transverse Views

Transverse Spinous Process View

Transverse Interlaminar View

#4 Transverse Spinous Process View

- Rotate probe 90 deg and centered on neuraxial midline
- The tip of the SP is visualized as a superficial hyperechoic line with acoustic shadowing beneath
- Hyperechoic lamina is visible on either side of the spinous process, but all other structures of interest are obscured by bony acoustic shadowing

#5 Transverse Interlaminar View

- Slide the probe cephalad/ caudad from the spinous processes
- Midline is indicated by the dark vertical stripe of interspinous ligament
- Estimate the required needle insertion depth by measuring depth from skin to posterior complex

"Flying Bat" sign

http://pie.med.utoronto.ca/OBAnesthesia/OBAnesthesia_content/OBA_spinalUltrasound_module.html

Atypical Sonogram

Conclusions

- Ultrasound: a promising technical advance in spinal and epidural techniques
- Bedside ultrasound can be extremely useful to facilitate spinal and epidural anesthesia placement by providing the following information:
 - the exact interspace at which the puncture should be performed, which is especially important in spinals,
 - the best interspace,
 - the ideal insertion point,
 - the angle of the puncture,
 - the distance from the skin to the epidural space, and
 - anatomical abnormalities, such as scoliosis

Conclusions

- Providing a superior teaching tool for spinals and epidurals, as it facilitates the learning curve, and may increase safety during the learning curve,
 - shortening the duration of procedures,
 - increasing the comfort of procedures,
 - decreasing the number of attempts and the associated trauma,
 - possibly decreasing the number of accidental dural punctures,
 - forecasting difficult epidurals (similar to difficult intubations),
 - transforming difficult epidurals into easy epidurals, and
 - helping in the selection of the best equipment for the spinal/ epidural.

